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Introduction

• Over 7000 languages spoken around the world
• over 90% used by less than 100,000 people
• not viable to develop bespoke systems/collect data

• Restrict languages to those with a written form
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Spoken Language Processing Framework
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Speech
Recognition

• First stage of speech processing usually speech recognition
• yields (at least) word-sequences for downstream task
• output may be significantly richer (lattices)

• Can be viewed as adding structure to the audio

3/70



Automatic Speech Recognition: 1-Best
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Automatic Speech Recognition: Lattices
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• A lattice, L, comprises:
• nodes (sometimes called state): associated with time stamps
• arcs: have labels and scores (not shown)
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Low Resource Speech Processing

• Low-resource can refer to various elements:
• acoustic model training data
• audio transcriptions
• lexicon (phonetic lexicon)
• language model training data
• language processing resources (parsers/PoS tagger)
• downstream task training data

• Systems often have high error rates (at all stages)
• need to mitigate impact of errors on downstream stages
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“Traditional” Speech Recognition Framework
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“End-to-End” Speech Recognition Framework
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Speech Recognition Components
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“Traditional” Speech Recognition [6]

• For input x1∶T output the word sequence:

ŵ = argmaxw {P(w ∣x1∶T )} = argmaxw {P(w)p(x1∶T ∣w)}

= argmaxw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

P(w) ∑

θ1∶T ∈Θw
p(x1∶T ,θ1∶T )

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

• The components are
• language model: P(w)
• lexicon: valid set of states for word sequence w , Θw
• acoustic model: p(x1∶T ,θ1∶T )
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Talk Overview

• Language Model

• Lexicon

• Acoustic Model

• Downstream Speech Procesing Tasks
• key-word and phrase spotting
• cross-language information retrieval
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Language Model
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Language Modelling

• Component of many speech/language applications

"it’s very cheaper for customer"

Given a sequence, what is the next word

• Statistical approaches have dominated for many years:
P(wi ∣w1, . . . ,wi−1) = P(wi ∣w1∶i−1)

• Sometimes need the probability of the words sequence

P(w1∶L) = P(w1)
L
∏
i=2

P(wi ∣w1∶i−1)

13/70



Language Modelling

• Component of many speech/language applications

"it’s very cheaper for customer"

Given a sequence, what is the next word

• Statistical approaches have dominated for many years:
P(wi ∣w1, . . . ,wi−1) = P(wi ∣w1∶i−1)

• Sometimes need the probability of the words sequence

P(w1∶L) = P(w1)
L
∏
i=2

P(wi ∣w1∶i−1)

13/70



Language Modelling

• Component of many speech/language applications

"it’s very cheaper for customer"

Given a sequence, what is the next word

• Statistical approaches have dominated for many years:
P(wi ∣w1, . . . ,wi−1) = P(wi ∣w1∶i−1)

• Sometimes need the probability of the words sequence

P(w1∶L) = P(w1)
L
∏
i=2

P(wi ∣w1∶i−1)

13/70



Language Model Training Data

<s> THE CAT SAT ON THE MAT </s>

<s> THE DOG IS IN THE GARDEN </s>

Vocabulary

Word

statistics

LM probabilities

Data

• Text data essential for current ASR systems
• determines the possible vocabulary for the systems

impacts Out Of Vocabulary (OOV) rate
• quantity of data determines accuracy (and order) of LMs
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The World Wide Web
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Web Training Data: Wikipedia

Can we make use of web-data for language model training?
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Nature of Web Text Data [7, 1, 10]

• Most text on the data “written” not speech transcripts
• significant mismatch with conversational form
• closer match to broadcast news
• Wikipedia not a perfect match!

• A number of issues need to be considered
• sources of data to use
• ensure match to target language (language identification)
• select data that matches target domain
• tidying data

• Build language model source components/interpolate
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Language Model Interpolation [13]

Build LM
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Transcripts

• Using limited held-out data to compute weights
• weights will indicate how source matches domain

also influenced by data quantity
• Can use untranscribed audio data ...
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Low Resource Web Scraping [10]

• Sources can be split into two broad classes:

• General search strategies: use Bing/Google to search web
• extract search terms from limited available data
• generates large quantities of data
• language filtering becomes important

(Mandarin/Cantonese, Kazakh/Russian)

• Directed Searches: use known language sources
• examples: Wikipedia, Blogs, News Forums, Twitter, TED talks
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Document Filtering

• Filtering approaches aim to match target domain
• build language model using limited available data
• filter documents using perplexity and OOV rates

• Perplexity: average number of following words
• using the in-domain language model
• compute perplexity of the document word sequence w1∶L

PPL(w1∶L) = exp(−
1
L

L
∑
i=1

log(P(wi ∣w1∶i−1)))

• OOV rate: percentage of words missing from LM vocabulary
• simply computed for the document w1∶L
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Web Data Statistics

Language LM Data (K) FLP OOV (%)
words vocab Weight ASR KWS

Pashto FLP 535 14.4 — 1.96 11.38
Web 104624 376.3 0.981 0.68 3.05

Amharic FLP 388 35.0 — 9.80 15.42
Web 13911 223.6 0.976 5.67 9.16

Dholuo FLP 467 17.5 — 3.26 12.17
Web 1217 18.8 0.998 3.01 10.73

• FLP is the (matched) in-domain CTS data
• Quantity of web-data available highly dependent on language

• interpolation weight (“match”) web data: range ≈ 0.1 to 0.001
• large impact on OOV rates
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Impact of Web Data: Lithuanian

Data LM OOV (%) WER (%)

NB FLP 7.7 37.1
+Web 4.6 34.3

WB FLP 23.4 52.3
+Web 4.7 25.9

• Evaluated on two types of data
• NB: narrow-band data from conversational telephone speech
• WB: wide-band data from news/topical speech data

• Significant gains on WB, small gains on NB
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Lexicon
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Pronunciation Lexicon
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Phonetic Lexicons

• Most speech recognition systems use a phonetic lexicon:
A ax
A ey
A. ey
A.’S ey z
AAH aa

• Each phone has attributes used for decision tree questions
ax Vowel V-Back Back Short Medium Unrounded
ey Vowel Short Dipthong Front-Start Fronting Medium Unrounded
z Fricative Central Lenis Coronal Anterior Continuent Strident

• Initial phonetic lexicon generated manually
• add terms using grapheme-to-phoneme (G2P) systems
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Graphemic Lexicons [8]

• As well as manual cost other issues with phonetic lexicons
• inconsistencies depending on the phonetician
• sometimes transcriptions generated for particular speaker

• An alternative is to generate a graphemic lexicon
A aˆI
A. aˆI;B
A.’S aˆI;BA sˆF
AAH aˆI aˆM hˆF

• deterministic process - no manual/G2P system required
• CUED system additional markers added (phonetic possible)

• A - apostrophe following the letter
• B - abbreviation (A., B. etc)
• position - I (initial), M (middle), F (final)
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Performance on English - Non-Native Learners [9]
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• For “beginners” graphemic systems outperform phonetic
• as ability improves ASR performance improves
• graphemic systems can be useful for (even) English!
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Writing Systems
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Writing Systems

• English/European languages Latin script is used

What about general languages world-wide?

• There are a range of writing schemes used:
• Pictographic - graphemes represent concepts
• Logographic - graphemes represent words of morphemes
• Syllabries - graphemes represent syllables
• Segmental - form examined on the Babel project

• Segmental writing systems can be further partitioned as
• alphabet - consonants and vowels both written
• abugida - vowels marked as diacritics on consonants
• abjad - only the consonants are written
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Example Writing Schemes

Language System Script Graphemes
Pashto Abjad Arabic 47
Tagalog Alphabet Latin 53†

Tamil Abugida Tamil 48
Zulu Alphabet Latin 52†

Kazakh Alphabet Cyrillic/Latin 126†

Telugu Abugida Telugu 60
Amharic Abugida Ethiopic 247
Mongolian Alphabet Cyrillic 66†

• Count excludes apostrophe, hyphen, punctuation ...
• includes capitals for Latin/Cyrillic scripts
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Graphemic System Attributes [4, 15]

• Often no attributes associated with graphemes
• limits decision tree questions to grapheme
• no attributes such as voiced/unvoiced
• how to handle very rare graphemes?

• Interesting to examine additional attributes
• bottom-up clustering of observed graphemes
• make use of attributes of the unicode coding

• Diacritics not always marked on found data
• can yield mismatch in vocabulary and pronunciation
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Kazakh Lexicon

• Mixture of Cyrillic and Latin script
• use unicode descriptors to map between forms

• Able to relate accented letters to root grapheme
• also delete diacritics from actual graphemes
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Phonetic vs Graphemic Performance

Language Script WER (%)
Phon Grph Comb

Tok Pisin Latin 40.6 41.1 39.4
Kazakh Cyrillic/Latin 53.5 52.7 51.5
Telugu Telugu 69.1 69.5 67.5

• Comparable performance of graphemic/phonetic systems
• graphemic/phonetic systems are complementary to one another

• Similar trend observed over many other languages
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Acoustic Model

34/70



Speech Data
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Acoustic Model Training

cat sat on the matThe

• Acoustic models training with supervised training
• pairs: (parametrised) waveform & orthographic transcription
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Handling Limited Training Data

• Increased training data yields performance gains
• but collecting data may be expensive (depending on language)
• manually transcribing data expensive ( alt. crowd-sourcing)

• Interested in approaches that increase data quantity
• without incurring significant costs

• Approaches discussed here
• data perturbation (artificially generate data)
• multi-language acoustic models
• semi-supervised training (use untranscribed data)
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Data Perturbation [14]

Train

Acoustic Models

Perturb Data

AudioAudioTrans Audio

• Perturb data with speaker perturbation
• synthesise data at a range of VTLN warp factors
• also possible to use speed and noise perturbation

• Transcription is known!
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SpecAugment [12]

• Motivated by computer vision occlusion
• mask regions of time/frequency in the training data
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Multi-Language Framework [3]

Train

Models

Trans L103

Trans L102Audio L102Audio L101Trans L101

Audio L103

• Data from non-target language used to train model:
• train complete acoustic model (see later)
• train DNN to extract multi-language features

40/70



Multi-Language Bottleneck Features
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• Generate features from multiple languages
• aim to make feature extractor language independent
• all layers other than output layer shared over all languages
• output-layer language-specific - “hat-swapping”
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Multi-Language Acoustic Models
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• Shared layer of networks over multiple acoustic models
• output-layer language-specific - “hat-swapping”
• can “fine-tune” parameters to target language
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Multilingual System Performance
TDNN-LSTM

System Language (WER %)
Bulgarian Lithuanian Tagalog

— 39.3 41.1 41.1
ML-Feature 35.2 38.1 39.5
ML-Model 37.2 39.3 39.6

• Multi-Language models based on 20+ languages
• performance gains for all set-ups using multi-lingual data

• Contrast of features and models
• additional hyper-parameter tuning needed for ML-Model
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Semi-Supervised Training: Framework

Baseline Supervised

Acoustic Models

Semi−SupervisedTune to 
Supervised Data

Selection

SegmentRun Speech

Recognition

Acoustic Models

Trans Audio Audio Trans

• Segment level selection of data to use
• use confidence scores in data selection
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Semi-Supervised Training: Criterion/Regularisation

• Split data according to training criterion
1. train network using all data using cross-entropy criterion
2. train network using transcribed data and sequence training

• Use unsupervised trained network as a prior
1. train network using all data (Mprior)
2. train network using transcribed data usingMprior as prior

• For CE training this yields

F(M) =
T
∑
i=1

K
∑
k=1

tik log(P(ωk ∣x i ,M))

+α
T
∑
i=1

K
∑
k=1

P(ωk ∣x i ,Mprior) log(P(ωk ∣x i ,M))
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Semi-Supervised Learning: Multi-Task Criterion
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• Have two separate output layers:
• targets associated with transcribed training data
• targets associated with untranscribed training data

• The training utterance transcription determines output layer
• simple form of “hat-swapping” (change output layer)
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Example Data Source: BBC Pashto
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Semi-Supervised Porting

• Possible mismatch between transcribed/evaluation data
• transcribed data: narrow-band conversational telephone speech
• evaluation data: wide-band broadcast and podcast speech

• Train acoustic and language models on available data
1. collect text web-data for target domain
2. down-sample evaluation data to narrow-band - recognise data
3. select data for model training - use wide-band parameters
4. train model - no use of transcribed data
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Semi-Supervised Porting: Narrow-to-Wide Band
TDNN-F

Language (WER %)
System Bulgarian Tagalog Somali

NB WB NB WB NB WB
ML-Feature 34.3 23.6 39.2 36.0 52.7 59.0
ML-Model 35.7 23.0 39.2 37.0 52.2 53.7
Comb 32.9 21.4 37.3 34.5 50.0 53.7

• Multi-Language models based on 20+ languages
• performance gains for all set-ups using multi-lingual data
• additional hyper-parameter tuning needed for ML-Model

• Down-sample WB data to allow NB models to be used
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Confidence-Based Data Selection

• Select data with the highest confidence score
• compute average confidence score for each utterance
• automatically does language verification per utterance

• Alternative approach is to use lattices during training
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Wide-Band Performance
TDNN-F

Language YT (hrs) WER %
Avl Sel NB YT

Bulgarian 2382 1444 23.6 17.8
Lithuanian 805 439 25.9 20.6

• Use ML-features to transcribe WB YouTube (YT) data
• select 50% of data using confidence scores
• train model only on WB data
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Downstream
Processing
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Task: Key Word (Phrase) Spotting [5]
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Key Word (Phrase) Spotting: Assessment

• Term Weighted Value (TWV) - official metric (β = 999.9)
• TWV (θ) = 1 − [PMiss(θ) + βPFA(θ)]
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Key Word (Phrase) Spotting: Framework
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• Key problems are:
• ASR systems with very limited training data available
• ASR systems for highly diverse languages
• KWS systems with high out-of-vocabulary query terms
• KWS for low accuracy ASR systems
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Lattices
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• A lattice, L, comprises:
• nodes (sometimes called state): associated with time stamps
• arcs: have labels and scores (not shown)
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Word Search Strategy

• Initially just consider detecting whether a word, w̃ , occurs
1. retrieve all arcs, a, in the index for which a ∈ I(w̃)

(grouped according to time-stamp information as well)
2. compute the posterior for that arc in the lattice P(a∣L(a))
3. construct the probability for word w̃ in lattice L

P(w̃ ∣L) = ∑
a∈I(w̃)∶L(a)=L

P(a∣L(a))

4. define a threshold of P(w̃ ∣L) for existence of word in utterance

• Yields count for a particular word for a lattice.
• how to obtain the posterior efficiently and handle phrases
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WFST Index Implementation [2]
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Highly Diverse Languages - ASR/KWS Performance
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Task: Cross Language Information Retrieval [11]

Passage 
Segmentation
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• Find documents in source language relevant to English query
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CLIR: Search Options

Queries: English (qe) translate (QT) Source (q̃f)
Document: Source (df) translate (DT) English (d̃e)
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CLIR: framework
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• Only consider search in source language
• Additional challenge

• limited machine translation data
• need to generalise beyond word/phrase occurrences
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Generative CLIR

• Compute probability generating query qe from document df

P(qe
∣df

) = ∏
we∈qe

[(1 − α)P(we
∣df

) + αP(we
∣ge

)]

• ge general English model - used for smoothing
• α tunable model (usually small 0.1)

• Need to find P(we∣df) from spoken document
• from ASR df → Lf

P(we
∣df

) = ∑
wf∈Lf

P(we
∣wf

)P(wf
∣L

f
)

• P(we∣wf) word-level translation table - requires limited data
• P(wf∣Lf) similar to word-level KWS
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Information Retrieval Assessment

• Use mean average precision to assess system performance
• standard information retrieval metric
• only assesses the ranking of the documents retrieved
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CLIR Performance

Language ASR System WER % mAP
NB WB 1-Best Lat

Swahili CUED 36.0 31.5 0.2058 0.2088
Bulgarian CUED 32.6 18.9 0.7366 0.7413

Lithuanian
CUED1 41.8 24.4 0.6466 0.7049
CUED2 37.4 21.4 0.6666 0.7477
CUED3 35.8 20.6 0.6948 0.7440

• Consistent gains using lattices over 1-best
• lattice search less sensitive to ASR accuracy
• but need to control lattice size
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Conclusions
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Conclusions

• “Plug and Play” systems built for diverse languages
• graphemic lexicons worked well for all languages

• Multi-language acoustic models important
• either bottleneck features, or “complete” models

• Data augmentation approaches important
• semi-supervised training can handle acoustic mismatch

• Use “rich” output from ASR system (lattices)
• improves downstream application performance
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Thank-you!
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